\(\int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx\) [100]

   Optimal result
   Rubi [A] (verified)
   Mathematica [B] (verified)
   Maple [C] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F(-2)]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 18, antiderivative size = 529 \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}} \]

[Out]

-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(1/2)/e
^(1/2)+1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))/(-d)^(
1/2)/e^(1/2)-1/2*(a+b*arccsc(c*x))*ln(1-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/
(-d)^(1/2)/e^(1/2)+1/2*(a+b*arccsc(c*x))*ln(1+I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1
/2)))/(-d)^(1/2)/e^(1/2)-1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2
)))/(-d)^(1/2)/e^(1/2)+1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))
/(-d)^(1/2)/e^(1/2)-1/2*I*b*polylog(2,-I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(
-d)^(1/2)/e^(1/2)+1/2*I*b*polylog(2,I*c*(I/c/x+(1-1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))/(-d)
^(1/2)/e^(1/2)

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 529, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.389, Rules used = {5339, 4757, 4825, 4615, 2221, 2317, 2438} \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 \sqrt {-d} \sqrt {e}} \]

[In]

Int[(a + b*ArcCsc[c*x])/(d + e*x^2),x]

[Out]

-1/2*((a + b*ArcCsc[c*x])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(Sqrt[-d]*Sqr
t[e]) + ((a + b*ArcCsc[c*x])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*Sqrt[-d
]*Sqrt[e]) - ((a + b*ArcCsc[c*x])*Log[1 - (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*Sq
rt[-d]*Sqrt[e]) + ((a + b*ArcCsc[c*x])*Log[1 + (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/
(2*Sqrt[-d]*Sqrt[e]) - ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(
Sqrt[-d]*Sqrt[e]) + ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] - Sqrt[c^2*d + e])])/(Sqrt[-
d]*Sqrt[e]) - ((I/2)*b*PolyLog[2, ((-I)*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(Sqrt[-d]*
Sqrt[e]) + ((I/2)*b*PolyLog[2, (I*c*Sqrt[-d]*E^(I*ArcCsc[c*x]))/(Sqrt[e] + Sqrt[c^2*d + e])])/(Sqrt[-d]*Sqrt[e
])

Rule 2221

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
 - Dist[d*(m/(b*f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4615

Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-I)*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (Int[(e + f*x)^m*(E^(I*(c + d*x))/(a - Rt[a^2 - b^2, 2] - I*
b*E^(I*(c + d*x)))), x] + Int[(e + f*x)^m*(E^(I*(c + d*x))/(a + Rt[a^2 - b^2, 2] - I*b*E^(I*(c + d*x)))), x])
/; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]

Rule 4757

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p]
&& (GtQ[p, 0] || IGtQ[n, 0])

Rule 4825

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Cos[x]/(
c*d + e*Sin[x])), x], x, ArcSin[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 5339

Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)
^p*((a + b*ArcSin[x/c])^n/x^(2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && Integer
Q[p]

Rubi steps \begin{align*} \text {integral}& = -\text {Subst}\left (\int \frac {a+b \arcsin \left (\frac {x}{c}\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right ) \\ & = -\text {Subst}\left (\int \left (\frac {a+b \arcsin \left (\frac {x}{c}\right )}{2 \sqrt {e} \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {a+b \arcsin \left (\frac {x}{c}\right )}{2 \sqrt {e} \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right ) \\ & = -\frac {\text {Subst}\left (\int \frac {a+b \arcsin \left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {a+b \arcsin \left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {e}} \\ & = -\frac {\text {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {(a+b x) \cos (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \sin (x)} \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {e}} \\ & = -\frac {\text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}-i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {e}}-\frac {\text {Subst}\left (\int \frac {e^{i x} (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}+i \sqrt {-d} e^{i x}} \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {e}} \\ & = -\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \text {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \text {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {b \text {Subst}\left (\int \log \left (1-\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {b \text {Subst}\left (\int \log \left (1+\frac {i \sqrt {-d} e^{i x}}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right ) \, dx,x,\csc ^{-1}(c x)\right )}{2 \sqrt {-d} \sqrt {e}} \\ & = -\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1-\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {(i b) \text {Subst}\left (\int \frac {\log \left (1+\frac {i \sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{i \csc ^{-1}(c x)}\right )}{2 \sqrt {-d} \sqrt {e}} \\ & = -\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {\left (a+b \csc ^{-1}(c x)\right ) \log \left (1+\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}-\frac {i b \operatorname {PolyLog}\left (2,-\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}}+\frac {i b \operatorname {PolyLog}\left (2,\frac {i c \sqrt {-d} e^{i \csc ^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 \sqrt {-d} \sqrt {e}} \\ \end{align*}

Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(1068\) vs. \(2(529)=1058\).

Time = 0.45 (sec) , antiderivative size = 1068, normalized size of antiderivative = 2.02 \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=-\frac {i \left (4 i a \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )+8 i b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (-i c \sqrt {d}+\sqrt {e}\right ) \cot \left (\frac {1}{4} \left (\pi +2 \csc ^{-1}(c x)\right )\right )}{\sqrt {c^2 d+e}}\right )-8 i b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \arctan \left (\frac {\left (i c \sqrt {d}+\sqrt {e}\right ) \cot \left (\frac {1}{4} \left (\pi +2 \csc ^{-1}(c x)\right )\right )}{\sqrt {c^2 d+e}}\right )+b \pi \log \left (1+\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \csc ^{-1}(c x) \log \left (1+\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-b \pi \log \left (1+\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+2 b \csc ^{-1}(c x) \log \left (1+\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-4 b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-b \pi \log \left (1-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+2 b \csc ^{-1}(c x) \log \left (1-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+4 b \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+b \pi \log \left (1+\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-2 b \csc ^{-1}(c x) \log \left (1+\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-4 b \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+b \pi \log \left (\sqrt {e}-\frac {i \sqrt {d}}{x}\right )-b \pi \log \left (\sqrt {e}+\frac {i \sqrt {d}}{x}\right )+2 i b \operatorname {PolyLog}\left (2,\frac {\left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i b \operatorname {PolyLog}\left (2,\frac {\left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )-2 i b \operatorname {PolyLog}\left (2,-\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )+2 i b \operatorname {PolyLog}\left (2,\frac {\left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-i \csc ^{-1}(c x)}}{c \sqrt {d}}\right )\right )}{4 \sqrt {d} \sqrt {e}} \]

[In]

Integrate[(a + b*ArcCsc[c*x])/(d + e*x^2),x]

[Out]

((-1/4*I)*((4*I)*a*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + (8*I)*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Arc
Tan[(((-I)*c*Sqrt[d] + Sqrt[e])*Cot[(Pi + 2*ArcCsc[c*x])/4])/Sqrt[c^2*d + e]] - (8*I)*b*ArcSin[Sqrt[1 + (I*Sqr
t[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTan[((I*c*Sqrt[d] + Sqrt[e])*Cot[(Pi + 2*ArcCsc[c*x])/4])/Sqrt[c^2*d + e]] + b*
Pi*Log[1 + (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*ArcCsc[c*x]*Log[1 + (Sqrt[e] - Sqr
t[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (
Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - b*Pi*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[
d]*E^(I*ArcCsc[c*x]))] + 2*b*ArcCsc[c*x]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] -
 4*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (-Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*Ar
cCsc[c*x]))] - b*Pi*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 2*b*ArcCsc[c*x]*Log[1
 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + 4*b*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/S
qrt[2]]*Log[1 - (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] + b*Pi*Log[1 + (Sqrt[e] + Sqrt[c^2*
d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - 2*b*ArcCsc[c*x]*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*A
rcCsc[c*x]))] - 4*b*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (Sqrt[e] + Sqrt[c^2*d + e])/(c*S
qrt[d]*E^(I*ArcCsc[c*x]))] + b*Pi*Log[Sqrt[e] - (I*Sqrt[d])/x] - b*Pi*Log[Sqrt[e] + (I*Sqrt[d])/x] + (2*I)*b*P
olyLog[2, (Sqrt[e] - Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (2*I)*b*PolyLog[2, (-Sqrt[e] + Sqrt[c^2
*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))] - (2*I)*b*PolyLog[2, -((Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*Arc
Csc[c*x])))] + (2*I)*b*PolyLog[2, (Sqrt[e] + Sqrt[c^2*d + e])/(c*Sqrt[d]*E^(I*ArcCsc[c*x]))]))/(Sqrt[d]*Sqrt[e
])

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 24.99 (sec) , antiderivative size = 272, normalized size of antiderivative = 0.51

method result size
parts \(\frac {a \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}-\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e \right )}\right )}{2}-\frac {b c \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{2}\) \(272\)
derivativedivides \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e \right )}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{2}\right )}{c}\) \(279\)
default \(\frac {\frac {a c \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{\sqrt {d e}}+b \,c^{2} \left (-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e \right )}\right )}{2}-\frac {\left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (-2 c^{2} d -4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\textit {\_R1} \left (i \operatorname {arccsc}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {i}{c x}-\sqrt {1-\frac {1}{c^{2} x^{2}}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1}^{2} c^{2} d -c^{2} d -2 e}\right )}{2}\right )}{c}\) \(279\)

[In]

int((a+b*arccsc(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

a/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))-1/2*b*c*sum(1/_R1/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(
1-1/c^2/x^2)^(1/2))/_R1)+dilog((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2
+c^2*d))-1/2*b*c*sum(_R1/(_R1^2*c^2*d-c^2*d-2*e)*(I*arccsc(c*x)*ln((_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)+dilog(
(_R1-I/c/x-(1-1/c^2/x^2)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(-2*c^2*d-4*e)*_Z^2+c^2*d))

Fricas [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\int { \frac {b \operatorname {arccsc}\left (c x\right ) + a}{e x^{2} + d} \,d x } \]

[In]

integrate((a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*arccsc(c*x) + a)/(e*x^2 + d), x)

Sympy [F]

\[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\int \frac {a + b \operatorname {acsc}{\left (c x \right )}}{d + e x^{2}}\, dx \]

[In]

integrate((a+b*acsc(c*x))/(e*x**2+d),x)

[Out]

Integral((a + b*acsc(c*x))/(d + e*x**2), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [F(-2)]

Exception generated. \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate((a+b*arccsc(c*x))/(e*x^2+d),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> an error occurred running a Giac command:INPUT:sage2OUTPUT:sym2poly/r2sym(co
nst gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \csc ^{-1}(c x)}{d+e x^2} \, dx=\int \frac {a+b\,\mathrm {asin}\left (\frac {1}{c\,x}\right )}{e\,x^2+d} \,d x \]

[In]

int((a + b*asin(1/(c*x)))/(d + e*x^2),x)

[Out]

int((a + b*asin(1/(c*x)))/(d + e*x^2), x)